[ad_1]
Moore, G. E. Cramming further parts onto built-in circuits, reprinted from Electronics, quantity 38, quantity 8, April 19, 1965, pp. 114 ff. IEEE J. Regular-State Circuits 11, 33–35 (2006).
Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).
Worldwide Roadmap for Units and Strategies (IEEE, 2021). https://irds.ieee.org/editions/2021
Sze, S. M. & Ng, Okay. Okay. Physics of Semiconductor Units (2006).
Keyes, R. W. Elementary limits of silicon expertise. Proc. IEEE 89, 227–239 (2001).
Zhang, G. Q., Graef, M. & Roosmalen, F. V. The rationale and paradigm of ‘bigger than Moore’. In 56th Digital Parts and Know-how Convention, pp. 151–157 (IEEE, 2006).
Fiori, G. et al. Electronics based completely on two-dimensional supplies. Nat. Nanotechnol. 9, 768–779 (2014).
Liu, Y. et al. Ensures and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Nie, W. et al. Excessive-efficiency solution-processed perovskite image voltaic cells with millimeter-scale grains. Science 347, 522–525 (2015).
Cao, Y. et al. Perovskite light-emitting diodes based completely on spontaneously typical submicrometre-scale buildings. Nature 562, 249–253 (2018).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Akinwande, D., Petrone, N. & Hone, J. Two-dimensional versatile nanoelectronics. Nat. Commun. 5, 5678 (2014).
Leijtens, T., Bush, Okay. A., Prasanna, R. & McGehee, M. D. Choices and challenges for tandem image voltaic cells utilizing metallic halide perovskite semiconductors. Nat. Vitality 3, 828–838 (2018).
Liu, X.-Okay. et al. Metallic halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).
Yumoto, G. et al. Sturdy spin–orbit coupling inducing Autler–Townes affect in lead halide perovskite nanocrystals. Nat. Commun. 12, 3026 (2021).
Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D supplies. Chem. Mater. 29, 3809–3826 (2017).
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the opening to bridge. Nat. Commun. 11, 3385 (2020).
Jeon, J. H., Jerng, S.-Okay., Akbar, Okay. & Chun, S.-H. Hydrophobic floor therapy and interrupted atomic layer deposition for very resistive Al2O3 movement footage on graphene. ACS Appl. Mater. Interfaces 8, 29637–29641 (2016).
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital units. Nat. Electron. 2, 563–571 (2019).
Sheng, Y. et al. Gate stack engineering in MoS2 field-effect transistor for lowered channel doping and hysteresis affect. Adv. Electron. Mater. 7, 2000395 (2021).
McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).
Xuan, Y. et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101 (2008).
Straus, D. B., Guo, S., Abeykoon, A. M. M. & Cava, R. J. Understanding the instability of the halide perovskite CsPbI3 by temperature-dependent structural evaluation. Adv. Mater. 32, 2001069 (2020).
Senanayak Satyaprasad, P. et al. Understanding worth transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).
Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D supplies and units. Chem. Soc. Rev. 47, 3037–3058 (2018).
Haick, H., Niitsoo, O., Ghabboun, J. & Cahen, D. Electrical contacts to pure molecular movement footage by metallic evaporation: affect of contacting particulars. J. Phys. Chem. C 111, 2318–2329 (2007).
Liao, L. et al. Excessive-κ oxide nanoribbons as gate dielectrics for prime mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711 (2010).
Liu, Y. et al. Van der Waals heterostructures and units. Nat. Rev. Mater. 1, 16042 (2016).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and former two-dimensional supplies. Nature 567, 323–333 (2019).
Wang, P. & Duan, X. Probing and pushing the restrict of rising digital supplies by way of van der Waals integration. MRS Bull. 46, 534–546 (2021).
Lee, G.-H. et al. Versatile and clear MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).
Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).
Liao, L. et al. Excessive-performance top-gated graphene-nanoribbon transistors utilizing zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).
Liao, L. et al. Extreme-gated graphene nanoribbon transistors with ultrathin high-okay dielectrics. Nano Lett. 10, 1917–1921 (2010).
Liao, L. et al. Excessive-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).
Cheng, R. et al. Excessive-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588 (2012).
Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed versatile electronics. Nat. Commun. 5, 5143 (2014).
Liu, Y. et al. Within the path of barrier free contact to molybdenum disulfide utilizing graphene electrodes. Nano Lett. 15, 3030–3034 (2015).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).
Chen, P. et al. Approaching the intrinsic exciton physics restrict in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).
Wang, J. et al. Transferred metallic gate to 2D semiconductors for sub-1 V operation and close to superb subthreshold slope. Sci. Adv. 7: eabf8744.
Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).
Manchanda, L. & Gurvitch, M. Yttrium oxide/silicon dioxide: a mannequin new dielectric constructing for VLSI/ULSI circuits. IEEE Electron System Lett. 9, 180–182 (1988).
Wang, Z. et al. Progress and effectivity of yttrium oxide as an excellent high-κ gate dielectric for carbon-based electronics. Nano Lett. 10, 2024–2030 (2010).
Durand, C. et al. Electrical property enhancements of yttrium oxide-based metallic–insulator–metallic capacitors. J. Vac. Sci. Technol. A 24, 459–466 (2006).
Liu, H. & Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron System Lett. 33, 546–548 (2012).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Gurarslan, A. et al. Floor-energy-assisted superb swap of centimeter-scale monolayer and few-layer MoS2 movement footage onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).
Li, T. et al. Epitaxial enchancment of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
[ad_2]